
Our approaches match or outperform 
differentiable simulation and end-to-end 
alternatives across all performance metrics.

Our approach does significantly
better for positional (right, top)
and geometric accuracy (below).

No approach successfully
captured the rotational
component of the articulated
object’s dynamics (right, bottom).
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We test across challenging contact-rich, collision-ridden 
datasets of objects falling under their autonomous 
dynamics and colliding with a flat ground.

1. New, real articulated object toss dataset (publicly 
available!), automated via a Franka Panda arm.

2. Cube toss dataset from [ContactNets, CoRL 2020].
3. Two simulation examples with significant modeled-to-

actual dynamics gaps.
1. Asymmetric object toss in vortex-shaped continuous 

force field.
2. Articulated object toss with artificially poor gravity 

initializations.
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• Goal:  To capture the contact and continuous dynamics of 
novel objects by build useful dynamics models from scratch, 
from observed odometry data.
• Challenges:
• Stiff and sharp contact dynamics overwhelm smooth and 

small continuous dynamics, making it difficult to capture 
both simultaneously.
• Existing model-based physics simulators neglect some 

significant real effects, like complex joint friction.
• Common learning techniques like weight regularization 

are ill-suited for the discontinuities of contact.
•Our Approach:  Learn physically-meaningful dynamics 

parameters, encoding contact dynamics via geometry and 
friction, and continuous dynamics via inertial parameters 
augmented with a residual physics network.

GOAL, CHALLENGES, APPROACH

We learn physical parameters
(standalone or as outputs of a
neural network) that
parameterize physics
simulations during inference.

For rigid body dynamics, 𝜆
represents contact forces
such that functions 𝑔, ℎ represent dynamics and contact constraints:

𝑦 = 𝑔 𝑥, 𝜆 ,  such that 𝜆 = 	 argmin ℎ(𝑥, 𝑦, 𝜆)
𝜆 ∈ Λ

Our goal is to train a dynamics model 𝑔!, ℎ! that will get used as above.

Differentiable simulation
trains these parameters by
forward simulating during
training, penalizing differences
in predicted next states with
the observed next states.
• However, this results in

poor generalizability in
high-stiffness regimes
characteristic of contact
dynamics.
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 Ours:
Instead, we use a physics-
inspired violation-based
implicit loss, avoiding
simulation and allowing
contact constraint violation
during training.
• Our approach boasts

better performance
in contact-rich and low-
data scenarios.
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TRAINING WITH VIOLATION-BASED IMPLICIT LOSS
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In the vortex simulation with a
complicated continuous force
field, only our approach recovers
inertia (below) and predicts
position (with residual physics)
(right, top) and rotation (right,
bottom)
accurately.

VORTEX SIMULATION RESULTS

• Our approaches built the most dynamically and 
physically accurate system models.

• Residual physics helped in simulation but not on 
real data.

• The community is welcome to contribute their 
own approaches towards learning a more 
accurate dynamics model of the articulated 
object using our dataset.
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